Generalisation of the Probability and Chess Question (Step-by-Step)

> Omkar Prakash Sambare Ramanujan Academy Nasik, Maharashtra omkarpsambare@gmail.com

Q. There is a normal chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

Set S be the all possible places for second rooks $n(S) = 8 \times 8 - 1 = 63$ Set R be the defined places for second rooks n(R) = (8 - 1) + (8 - 1)n(R) = 14 $P(R) = \frac{n(R)}{n(S)} = \frac{14}{63} = \frac{2}{9}$

Q. There is $(n \times n)$ chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

Set S be the all possible places for second rooks

$$n(S) = n \times n - 1 = n^2 - 1$$

$$n(R) = (n - 1) + (n - 1)$$
$$n(R) = 2(n - 1)$$

$$P(R) = \frac{n(R)}{n(S)} = \frac{2(n-1)}{n^2 - 1}$$

$$P(R)=\frac{2}{n+1}$$

Q. There is $(n_1 \times n_2)$ chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

Set S be the all possible places for second rooks

$$n(S) = n_1 \cdot n_2 - 1$$

$$n(R) = (n_1 - 1) + (n_2 - 1)$$
$$n(R) = n_1 + n_2 - 2$$

$$P(R) = \frac{n(R)}{n(S)} = \frac{n_1 + n_2 - 2}{n_1 \cdot n_2 - 1}$$

Q. There is a (8×8) **3 players** chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

Total squares
=
$$3\left(\frac{8^2}{2}\right) = 96$$

 $n(S) = 96 - 1 = 95$

Number of attacking squares of 1^{st} rook

 $n(R) = 2 \times 7 = 14$

$$P(R) = \frac{n(R)}{n(S)} = \frac{14}{95}$$

Q. There is a $(n \times n)$ **3 players** chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

Total squares

$$= 3\left(\frac{n^2}{2}\right) = \frac{3n^2}{2}$$

$$n(S) = \frac{3n^2}{2} - 1 = \frac{3n^2 - 2}{2}$$
Number of attacking squares
of 1st rook

$$n(R) = 2 \times (n - 1)$$

$$P(R) = \frac{n(R)}{n(S)} = \frac{2 \times (n - 1)}{\left(\frac{3n^2 - 2}{2}\right)}$$

$$P(R) = \frac{4 \times (n - 1)}{3n^2 - 2}$$

Q. There is a $(n_1 \times n_2)$ 3 players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

Total squares $=3\left(\frac{n_1 \cdot n_2}{2}\right) = \frac{3n_1 \cdot n_2}{2}$ $n(S) = \frac{3n_1 \cdot n_2}{2} - 1 = \frac{3n_1 \cdot n_2 - 2}{2}$ Number of attacking squares of 1st rook $n(R) = (n_1 - 1) + (n_2 - 1)$ $n(R) = n_1 + n_2 - 2$ $P(R) = \frac{n(R)}{n(S)} = \frac{n_1 + n_2 - 2}{\left(\frac{3n_1 \cdot n_2 - 2}{2}\right)}$ $P(R) = \frac{2 \times (n_1 + n_2 - 2)}{3n_1 + n_2 - 2}$

Different number of players chess board (Using "CHNESS" android app)

Q. There is a (8×8) <u>z players</u> chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

Total squares
$$= \mathbf{z} \left(\frac{8^2}{2} \right) = 32Z$$
 $n(S) = 32z - 1$

Number of attacking squares of 1st rook $n(R) = 2 \times 7 = 14$

$$P(R) = \frac{n(R)}{n(S)} = \frac{14}{32z - 1}$$

Q. There is a $(n \times n)$ z players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other? $(n^2) = \pi^2 = \pi^2 = 2$

Total squares
$$= z\left(\frac{n}{2}\right) = \frac{2n}{2}$$
 $n(S) = \frac{2n^2}{2} - 1 = \frac{2n^2 - 2}{2}$

Number of attacking squares of 1^{st} rook $n(R) = 2 \times (n-1)$

$$P(R) = \frac{n(R)}{n(S)} = \frac{2 \times (n-1)}{\left(\frac{zn^2 - 2}{2}\right)} = \frac{4 \times (n-1)}{zn^2 - 2}$$

Q. There is a $(n_1 \times n_2)$ z players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

Total squares
$$= z \left(\frac{n_1 \times n_2}{2} \right) = \frac{z n_1 n_2}{2}$$
 $n(S) = \frac{z n_1 n_2}{2} - 1 = \frac{z n_1 n_2 - 2}{2}$

Number of attacking squares of 1st rook $n(R) = (n_1 - 1) + (n_2 - 1) = n_1 + n_2 - 2$

$$P(R) = \frac{n(R)}{n(S)} = \frac{n_1 + n_2 - 2}{\left(\frac{zn_1n_2 - 2}{2}\right)} = \frac{2 \times (n_1 + n_2 - 2)}{zn_1n_2 - 2}$$

Again come back to original question and make some changes

Q. There is a **3** Dimensional $(8 \times 8 \times 8)$ chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

Set S be the all possible places for second rooks $n(S) = 8 \times 8 \times 8 - 1 = 511$ Set R be the defined places for second rooks n(R) = (8 - 1) + (8 - 1) + (8 - 1)n(R) = 21 $P(R) = \frac{n(R)}{n(S)} = \frac{21}{511} = \frac{3}{73}$

Q. There is a **3** Dimensional $(n \times n \times n)$ chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

3 Dimensional $(8 \times 8 \times 8)$

Set S be the all possible places for second rooks

 $n(S) = 8 \times 8 \times 8 - 1 = 511$

Set R be the defined places for second rooks

n(R) = (8 - 1) + (8 - 1) + (8 - 1)n(R) = 21

$$P(R) = \frac{n(R)}{n(S)} = \frac{21}{511} = \frac{3}{73}$$

3 Dimensional $(n \times n \times n)$

Set S be the all possible places for second rooks

$$n(S) = n \times n \times n - 1 = n^3 - 1$$

$$n(R) = (n - 1) + (n - 1) + (n - 1)$$
$$n(R) = 3 \times (n - 1)$$
$$P(R) = \frac{n(R)}{n(S)} = \frac{3 \times (n - 1)}{n^3 - 1} = \frac{3}{(n^2 + n + 1)}$$

Q. There is a 3 Dimensional $(n_1 \times n_2 \times n_3)$ chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

3 Dimensional $(n \times n \times n)$

Set S be the all possible places for second rooks

 $n(S) = n \times n \times n - 1 = n^3 - 1$

Set R be the defined places for second rooks

$$n(R) = (n - 1) + (n - 1) + (n - 1)$$

$$n(R) = 3 \times (n - 1)$$

$$P(R) = \frac{n(R)}{n(S)} = \frac{3 \times (n - 1)}{n^3 - 1} = \frac{3}{(n^2 + n + 1)}$$

3 Dimensional $(n_1 \times n_2 \times n_3)$

Set S be the all possible places for second rooks

$$n(S) = n_1 \cdot n_2 \cdot n_3 - 1$$

$$n(R) = (n_1 - 1) + (n_2 - 1) + (n_3 - 1)$$

$$n(R) = n_1 + n_2 + n_3 - 3$$

$$P(R) = \frac{n(R)}{n(S)} = \frac{n_1 + n_2 + n_3 - 3}{n_1 \cdot n_2 \cdot n_3 - 1}$$

Q. There is a **3** Dimensional $(8 \times 8 \times 8)$ **3** players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

3 Dimensional (8 × 8 × 8) 2 players

$$n(S) = 8^3 - 1 = 511$$

 $n(R) = (8 - 1) + (8 - 1) + (8 - 1) = 21$
 $P(R) = \frac{n(R)}{n(S)} = \frac{21}{511} = \frac{3}{73}$
3 Dimensional (8 × 8 × 8) 3 players
 $n(S) = 3 \times \left(\frac{8^3}{2}\right) - 1 = 767$
 $n(R) = (8 - 1) + (8 - 1) + (8 - 1) = 21$
 $P(R) = \frac{n(R)}{n(S)} = \frac{21}{517} = \frac{3}{73}$

Q. There is a **3** Dimensional $(8 \times 8 \times 8)$ **z** players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$n(S) = \mathbf{z} \times \left(\frac{8^3}{2}\right) - 1 = 256z - 1 \qquad n(R) = (8 - 1) + (8 - 1) + (8 - 1) = 21$$
$$P(R) = \frac{n(R)}{n(S)} = \frac{21}{256z - 1}$$

Q. There is a 3 Dimensional $(n \times n \times n)$ 3 players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

3 Dimensional
$$(n \times n \times n)$$
 2 players
 $n(S) = n^3 - 1$
 $n(R) = (n - 1) + (n - 1) + (n - 1)$
 $n(R) = 3 \times (n - 1)$
 $p(R) = \frac{n(R)}{n(S)} = \frac{3 \times (n - 1)}{n^3 - 1} = \frac{3}{(n^2 + n + 1)}$
3 Dimensional $(n \times n \times n)$ 3 players
 $n(S) = 3 \times \left(\frac{n^3}{2}\right) - 1 = \frac{3n^3 - 2}{2}$
 $n(R) = (n - 1) + (n - 1) + (n - 1)$
 $n(R) = 3 \times (n - 1)$
 $P(R) = \frac{n(R)}{n(S)} = \frac{3 \times (n - 1)}{(\frac{3n^3 - 2}{2})} = \frac{6 \times (n - 1)}{3n^3 - 2}$

Q. There is a **3 Dimensional** $(n \times n \times n)$ **z** players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$n(S) = z \times \left(\frac{n^3}{2}\right) - 1 = \frac{zn^3 - 2}{2} \qquad n(R) = 3 \times (n - 1)$$
$$P(R) = \frac{n(R)}{n(S)} = \frac{3 \times (n - 1)}{\left(\frac{zn^3 - 2}{2}\right)} = \frac{6 \times (n - 1)}{zn^3 - 2}$$

Q. There is a 3 Dimensional $(n_1 \times n_2 \times n_3)$ 3 players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

3 Dimensional
$$(n_1 \times n_2 \times n_3)$$
 2 players
 $n(S) = n_1 \cdot n_2 \cdot n_3 - 1$
 $n(R) = (n_1 - 1) + (n_2 - 1) + (n_3 - 1)$
 $n(R) = n_1 + n_2 + n_3 - 3$
 $P(R) = \frac{n(R)}{n(S)} = \frac{n_1 + n_2 + n_3 - 3}{n_1 \cdot n_2 \cdot n_3 - 1}$
 $P(R) = \frac{n(R)}{n(S)} = \frac{n_1 + n_2 + n_3 - 3}{n_1 \cdot n_2 \cdot n_3 - 1}$
 $P(R) = \frac{n(R)}{n(S)} = \frac{n_1 + n_2 + n_3 - 3}{n_1 \cdot n_2 \cdot n_3 - 1}$
 $P(R) = \frac{n(R)}{n(S)} = \frac{n_1 + n_2 + n_3 - 3}{(\frac{3 \cdot n_1 \cdot n_2 \cdot n_3 - 2}{2})}$
 $= \frac{2(n_1 + n_2 + n_3 - 3)}{3 \cdot n_1 \cdot n_2 \cdot n_3 - 2}$

Q. There is a **3 Dimensional** $(n_1 \times n_2 \times n_3)$ **z** players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$n(S) = \mathbf{z} \times \left(\frac{n_1 \cdot n_2 \cdot n_3}{2}\right) - 1 = \frac{z \cdot n_1 \cdot n_2 \cdot n_3 - 2}{2} \qquad \mathbf{P}(\mathbf{R}) = \frac{\mathbf{n}(\mathbf{R})}{\mathbf{n}(S)} = \frac{\mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 - 3}{\left(\frac{z \cdot n_1 \cdot n_2 \cdot n_3 - 2}{2}\right)}$$
$$n(R) = (n_1 - 1) + (n_2 - 1) + (n_3 - 1)$$
$$n(R) = n_1 + n_2 + n_3 - 3 \qquad = \frac{\mathbf{2}(n_1 + n_2 + n_3 - 3)}{\mathbf{z} \cdot \mathbf{n}_1 \cdot \mathbf{n}_2 \cdot \mathbf{n}_3 - 2}$$

Q. There is Y Dimensional $(8 \times 8 \times \cdots \times 8)$ 2 players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$n(S) = 8 \times 8 \times 8 \times \cdots \times 8 - 1 = 8^{Y} - 1$$

$$n(R) = (8 - 1) + (8 - 1) + (8 - 1) + \cdots (Y \text{ times}) = Y(8 - 1) = 7Y$$

$$P(R) = \frac{n(R)}{n(S)} = \frac{7Y}{8^{Y} - 1}$$

Q. There is **Y** Dimensional $(n \times n \times \dots \times n)$ **2** players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$n(S) = n \times n \times n \times \dots \times n - 1 = n^{Y} - 1$$

$$n(R) = (n - 1) + (n - 1) + (n - 1) + \dots (Y \text{ times}) = Y(n - 1)$$

$$P(R) = \frac{n(R)}{n(S)} = \frac{Y(n - 1)}{n^{Y} - 1}$$

Q. There is Y Dimensional $(n \times n \times \dots \times n)$ 2 players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$n(S) = n \times n \times n \times \dots \times n - 1 = n^{Y} - 1$$

$$n(R) = (n - 1) + (n - 1) + (n - 1) + \dots (Y \text{ times}) = Y(n - 1)$$

$$P(R) = \frac{n(R)}{n(S)} = \frac{Y(n - 1)}{n^{Y} - 1}$$

Q. There is Y Dimensional $(n_1 \times n_2 \times n_3 \times \cdots \times n_Y)$ 2 players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$n(S) = n_1 \times n_2 \times n_3 \times \dots \times n_Y - 1$$

$$n(R) = (n_1 - 1) + (n_2 - 1) + (n_3 - 1) + \dots + (n_Y - 1) = n_1 + n_2 + n_3 + \dots + n_Y - Y$$

$$P(R) = \frac{n(R)}{n(S)} = \frac{n_1 + n_2 + n_3 + \dots + n_Y - Y}{n_1 \times n_2 \times n_3 \times \dots \times n_Y - 1}$$

Q. There is Y Dimensional $(8 \times 8 \times \cdots \times 8)$ z players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$n(S) = \frac{\mathbf{z} \times (8 \times 8 \times 8 \times \dots \times 8)}{2} - 1 = \frac{\mathbf{z} 8^{Y}}{2} - 1 = \frac{\mathbf{z} 8^{Y} - 2}{2}$$
$$n(R) = (8 - 1) + (8 - 1) + (8 - 1) + \dots (Y \text{ times}) = Y(8 - 1) = 7Y$$
$$P(R) = \frac{n(R)}{n(S)} = \frac{7Y}{\left(\frac{\mathbf{z} 8^{Y} - 2}{2}\right)} = \frac{14Y}{\mathbf{z} 8^{Y} - 2}$$

Q. There is Y Dimensional $(n \times n \times \dots \times n)$ z players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$n(S) = \frac{z \times (n \times n \times n \times \dots \times n)}{2} - 1 = \frac{zn^{Y}}{2} - 1 = \frac{zn^{Y} - 2}{2}$$
$$n(R) = (n - 1) + (n - 1) + (n - 1) + \dots (Y \text{ times}) = Y(n - 1) = Y(n - 1)$$
$$P(R) = \frac{n(R)}{n(S)} = \frac{Y(n - 1)}{\left(\frac{zn^{Y} - 2}{2}\right)} = \frac{2Y(n - 1)}{zn^{Y} - 2}$$

Q. There is Y Dimensional $(n \times n \times \dots \times n)$ z players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$n(S) = \frac{z \times (n \times n \times n \times \dots \times n)}{2} - 1 = \frac{zn^{Y}}{2} - 1 = \frac{zn^{Y} - 2}{2}$$
$$n(R) = (n - 1) + (n - 1) + (n - 1) + \dots (Y \text{ times}) = Y(n - 1) = Y(n - 1)$$
$$P(R) = \frac{n(R)}{n(S)} = \frac{Y(n - 1)}{\left(\frac{zn^{Y} - 2}{2}\right)} = \frac{2Y(n - 1)}{zn^{Y} - 2}$$

Q. There is Y Dimensional $(n_1 \times n_2 \times \cdots \times n_Y)$ z players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$n(S) = \frac{z \times (n_1 \times n_2 \times \dots \times n_Y)}{2} - 1 = \frac{z \times n_1 \times n_2 \times \dots \times n_Y}{2} - 1 = \frac{zn_1n_2 \dots n_Y - 2}{2}$$
$$n(R) = (n_1 - 1) + (n_2 - 1) + (n_3 - 1) + \dots + (n_Y - 1) = n_1 + n_2 + n_3 + \dots + n_Y - Y$$
$$P(R) = \frac{n(R)}{n(S)} = \frac{n_1 + n_2 + n_3 + \dots + n_Y - Y}{\frac{zn_1n_2 \dots n_Y - 2}{2}} = \frac{2(n_1 + n_2 + n_3 + \dots + n_Y - Y)}{zn_1n_2 \dots n_Y - 2}$$