Generalisation of the Probability and Chess Question (Step-by-Step)

Omkar Prakash Sambare
Ramanujan Academy
Nasik, Maharashtra omkarpsambare@gmail.com
Q. There is a normal chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

Set S be the all possible places for second rooks

$$
n(S)=8 \times 8-1=63
$$

Set R be the defined places for second rooks

$$
\begin{aligned}
& n(R)=(8-1)+(8-1) \\
& n(R)=14 \\
& P(R)=\frac{n(R)}{n(S)}=\frac{14}{63}=\frac{2}{9}
\end{aligned}
$$

Q. There is $(\boldsymbol{n} \times \boldsymbol{n})$ chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

n

Set S be the all possible places for second rooks

$$
n(S)=n \times n-1=n^{2}-1
$$

Set R be the defined places for second rooks

$$
\begin{aligned}
n(R) & =(n-1)+(n-1) \\
n(R) & =2(n-1) \\
P(R) & =\frac{n(R)}{n(S)}=\frac{2(n-1)}{n^{2}-1} \\
P(R) & =\frac{2}{n+1}
\end{aligned}
$$

Q. There is $\left(n_{1} \times n_{2}\right)$ chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

Set S be the all possible places for second rooks
$n(S)=n_{1} \cdot n_{2}-1$
Set R be the defined places for second rooks

$$
\begin{aligned}
& n(R)=\left(n_{1}-1\right)+\left(n_{2}-1\right) \\
& n(R)=n_{1}+n_{2}-2
\end{aligned}
$$

$$
P(R)=\frac{n(R)}{n(S)}=\frac{n_{1}+n_{2}-2}{n_{1} \cdot n_{2}-1}
$$

Q. There is a $(8 \times 8) 3$ players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$
\begin{aligned}
& \text { Total squares } \\
& \begin{array}{l}
=3\left(\frac{8^{2}}{2}\right)=96 \\
n(S)=96-1=95
\end{array}
\end{aligned}
$$

Number of attacking squares of $1^{\text {st }}$ rook

$$
\begin{aligned}
& n(R)=2 \times 7=14 \\
& P(\boldsymbol{R})=\frac{n(\boldsymbol{R})}{\boldsymbol{n (S)}}=\frac{14}{\mathbf{9 5}}
\end{aligned}
$$

Q. There is a $(n \times n) 3$ players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$n^{ \pm}$

Total squares

$$
\begin{aligned}
& =3\left(\frac{n^{2}}{2}\right)=\frac{3 n^{2}}{2} \\
& n(S)=\frac{3 n^{2}}{2}-1=\frac{3 n^{2}-2}{2}
\end{aligned}
$$

Number of attacking squares of $1^{\text {st }}$ rook

$$
n(R)=2 \times(n-1)
$$

$$
P(R)=\frac{n(R)}{n(S)}=\frac{2 \times(n-1)}{\left(\frac{3 n^{2}-2}{2}\right)}
$$

$$
P(R)=\frac{4 \times(n-1)}{3 n^{2}-2}
$$

Q. There is a $\left(\boldsymbol{n}_{\mathbf{1}} \times \boldsymbol{n}_{2}\right) 3$ players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

Total squares
$=3\left(\frac{n_{1} \cdot n_{2}}{2}\right)=\frac{3 n_{1} \cdot n_{2}}{2}$

$$
n(S)=\frac{3 n_{1} \cdot n_{2}}{2}-1=\frac{3 n_{1} \cdot n_{2}-2}{2}
$$

Number of attacking squares of $1^{\text {st }}$ rook

$$
\begin{aligned}
n(R) & =\left(n_{1}-1\right)+\left(n_{2}-1\right) \\
n(R) & =n_{1}+n_{2}-2 \\
P(R) & =\frac{n(R)}{n(S)}=\frac{n_{1}+n_{2}-2}{\left(\frac{3 n_{1} \cdot n_{2}-2}{2}\right)} \\
P(\boldsymbol{R}) & =\frac{2 \times\left(n_{1}+n_{2}-2\right)}{3 n_{1} \cdot n_{2}-2}
\end{aligned}
$$

Different number of players chess board

(Using "CHNESS" android app)
Q. There is a (8×8) z players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

Total squares $=z\left(\frac{8^{2}}{2}\right)=32 Z \quad n(S)=32 z-1$
Number of attacking squares of $1^{\text {st }}$ rook $\quad n(R)=2 \times 7=14$

$$
P(R)=\frac{n(R)}{n(S)}=\frac{14}{32 z-1}
$$

Q. There is a $(\boldsymbol{n} \times \boldsymbol{n})$ z players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$
\begin{aligned}
& \text { g on each other? } \\
& \text { Total squares }=z\left(\frac{n^{2}}{2}\right)=\frac{z n^{2}}{2} \quad n(S)=\frac{z n^{2}}{2}-1=\frac{z n^{2}-2}{2}, ~
\end{aligned}
$$

Number of attacking squares of $1^{\text {st }}$ rook $\quad n(R)=2 \times(n-1)$

$$
P(R)=\frac{n(R)}{n(S)}=\frac{2 \times(n-1)}{\left(\frac{z n^{2}-2}{2}\right)}=\frac{4 \times(n-1)}{z n^{2}-2}
$$

Q. There is a $\left(\boldsymbol{n}_{\boldsymbol{1}} \times \boldsymbol{n}_{\mathbf{2}}\right)$ z players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

Total squares $=z\left(\frac{\boldsymbol{n}_{1} \times \boldsymbol{n}_{2}}{2}\right)=\frac{z n_{1} n_{2}}{2} \quad n(S)=\frac{z n_{1} n_{2}}{2}-1=\frac{z n_{1} n_{2}-2}{2}$
Number of attacking squares of $1^{\text {st }}$ rook $\quad n(R)=\left(n_{1}-1\right)+\left(n_{2}-1\right)=n_{1}+n_{2}-2$

$$
P(R)=\frac{n(R)}{n(S)}=\frac{n_{1}+n_{2}-2}{\left(\frac{z n_{1} n_{2}-2}{2}\right)}=\frac{2 \times\left(n_{1}+n_{2}-2\right)}{z n_{1} n_{2}-2}
$$

Again come back to original question and make some changes

Q. There is a 3 Dimensional $(8 \times 8 \times 8)$ chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

Set S be the all possible places for second rooks

$$
n(S)=8 \times 8 \times 8-1=511
$$

Set R be the defined places for second rooks
$n(R)=(8-1)+(8-1)+(8-1)$
$n(R)=21$
$P(R)=\frac{n(R)}{n(S)}=\frac{21}{511}=\frac{3}{73}$
Q. There is a 3 Dimensional $(n \times n \times n)$ chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

3 Dimensional $(8 \times 8 \times 8)$

Set S be the all possible places for second rooks

$$
n(S)=8 \times 8 \times 8-1=511
$$

Set R be the defined places for second rooks

$$
\begin{aligned}
& n(R)=(8-1)+(8-1)+(8-1) \\
& n(R)=21 \\
& \boldsymbol{P}(\boldsymbol{R})=\frac{\boldsymbol{n}(\boldsymbol{R})}{\boldsymbol{n}(\boldsymbol{S})}=\frac{\mathbf{2 1}}{\mathbf{5 1 1}}=\frac{\mathbf{3}}{\mathbf{7 3}}
\end{aligned}
$$

3 Dimensional $(n \times n \times n)$

Set S be the all possible places for second rooks
$n(S)=n \times n \times n-1=n^{3}-1$
Set R be the defined places for second rooks
$n(R)=(n-1)+(n-1)+(n-1)$
$n(R)=3 \times(n-1)$
$P(R)=\frac{n(R)}{n(S)}=\frac{3 \times(n-1)}{n^{3}-1}=\frac{3}{\left(n^{2}+n+1\right)}$
Q. There is a 3 Dimensional $\left(n_{1} \times n_{2} \times n_{3}\right)$ chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

3 Dimensional $(n \times n \times n)$

Set S be the all possible places for second rooks

$$
n(S)=n \times n \times n-1=n^{3}-1
$$

Set R be the defined
places for second
rooks
$n(R)=(n-1)+(n-1)+(n-1)$
$n(R)=3 \times(n-1)$
$P(R)=\frac{n(R)}{n(S)}=\frac{3 \times(n-1)}{n^{3}-1}=\frac{3}{\left(n^{2}+n+1\right)}$

3 Dimensional $\left(n_{1} \times n_{2} \times n_{3}\right)$

Set S be the all possible places for second rooks

$$
n(S)=n_{1} \cdot n_{2} \cdot n_{3}-1
$$

Set R be the defined places for second rooks

$$
\begin{aligned}
& n(R)=\left(n_{1}-1\right)+\left(n_{2}-1\right)+\left(n_{3}-1\right) \\
& n(R)=n_{1}+n_{2}+n_{3}-3 \\
& \boldsymbol{P}(\boldsymbol{R})=\frac{\boldsymbol{n}(\boldsymbol{R})}{\boldsymbol{n}(\boldsymbol{S})}=\frac{\boldsymbol{n}_{1}+\boldsymbol{n}_{2}+\boldsymbol{n}_{3}-3}{\boldsymbol{n}_{\mathbf{1}} \cdot \boldsymbol{n}_{\mathbf{2}} \cdot \boldsymbol{n}_{\mathbf{3}}-\mathbf{1}}
\end{aligned}
$$

Q. There is a 3 Dimensional $(8 \times 8 \times 8) 3$ players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

3 Dimensional $(8 \times 8 \times 8) 2$ players
$n(S)=8^{3}-1=511$
$n(R)=(8-1)+(8-1)+(8-1)=21$

$$
P(R)=\frac{n(R)}{n(S)}=\frac{21}{511}=\frac{3}{73}
$$

3 Dimensional $(8 \times 8 \times 8) 3$ players

$$
n(S)=3 \times\left(\frac{8^{3}}{2}\right)-1=767
$$

$$
n(R)=(8-1)+(8-1)+(8-1)=21
$$

$$
P(R)=\frac{n(R)}{n(S)}=\frac{21}{767}
$$

Q. There is a 3 Dimensional $(8 \times 8 \times 8)$ z players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$
\begin{aligned}
& n(S)=z \times\left(\frac{8^{3}}{2}\right)-1=256 z-1 \quad n(R)=(8-1)+(8-1)+(8-1)=21 \\
& P(R)=\frac{\boldsymbol{n}(\boldsymbol{R})}{\boldsymbol{n}(S)}=\frac{21}{256 z-1}
\end{aligned}
$$

Q. There is a 3 Dimensional $(\boldsymbol{n} \times \boldsymbol{n} \times \boldsymbol{n}) 3$ players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

3 Dimensional $(n \times n \times n) 2$ players 3 Dimensional $(n \times n \times n) 3$ players $n(S)=n^{3}-1$
$n(R)=(n-1)+(n-1)+(n-1)$
$n(R)=3 \times(n-1)$
$P(R)=\frac{n(R)}{n(S)}=\frac{3 \times(n-1)}{n^{3}-1}=\frac{3}{\left(n^{2}+n+1\right)}$
Q. There is a 3 Dimensional $(n \times n \times n)$ z players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$
\begin{gathered}
n(S)=z \times\left(\frac{n^{3}}{2}\right)-1=\frac{z n^{3}-2}{2} \quad n(R)=3 \times(n-1) \\
P(R)=\frac{n(R)}{n(S)}=\frac{3 \times(\boldsymbol{n}-1)}{\left(\frac{z n^{3}-2}{2}\right)}=\frac{6 \times(n-1)}{z n^{3}-2}
\end{gathered}
$$

Q．There is a 3 Dimensional $\left(\boldsymbol{n}_{\boldsymbol{1}} \times \boldsymbol{n}_{\mathbf{2}} \times \boldsymbol{n}_{\boldsymbol{3}}\right) 3$ players chess board and two rooks． If we put that 2 rooks on squares chessboard one－by－one randomly，then what is the probability that two rooks are attacking on each other？

$$
\begin{aligned}
& n(S)=n_{1} \cdot n_{2} \cdot n_{3}-1 \\
& n(R)=\left(n_{1}-1\right)+\left(n_{2}-1\right)+\left(n_{3}-1\right) \\
& n(R)=n_{1}+n_{2}+n_{3}-3 \\
& \quad \boldsymbol{P}(\boldsymbol{R})=\frac{\boldsymbol{n}(\boldsymbol{R})}{\boldsymbol{n}(\boldsymbol{S})}=\frac{\boldsymbol{n}_{1}+\boldsymbol{n}_{\mathbf{2}}+\boldsymbol{n}_{3}-\mathbf{3}}{\boldsymbol{n}_{\mathbf{1}} \cdot \boldsymbol{n}_{\mathbf{2}} \cdot \boldsymbol{n}_{\mathbf{3}}-\mathbf{1}}
\end{aligned}
$$

3 Dimensional $\left(n_{1} \times n_{2} \times n_{3}\right) 3$ players

$$
\begin{aligned}
n(S) & =3 \times\left(\frac{n_{1} \cdot n_{2} \cdot n_{3}}{2}\right)-1=\frac{3 n_{1} \cdot n_{2} \cdot n_{3}-2}{2} \\
n(R) & =\left(n_{1}-1\right)+\left(n_{2}-1\right)+\left(n_{3}-1\right) \\
n(R) & =n_{1}+n_{2}+n_{3}-3 \\
\boldsymbol{P}(\boldsymbol{R}) & =\frac{\boldsymbol{n}(\boldsymbol{R})}{\boldsymbol{n}(\boldsymbol{S})}=\frac{\boldsymbol{n}_{1}+\boldsymbol{n}_{2}+\boldsymbol{n}_{3}-\mathbf{3}}{\left(\frac{\mathbf{3} \cdot \boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2} \cdot \boldsymbol{n}_{3}-\mathbf{2}}{\mathbf{2}}\right)} \\
& =\frac{2\left(\boldsymbol{n}_{1}+\boldsymbol{n}_{2}+\boldsymbol{n}_{3}-3\right)}{3 \cdot \boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2} \cdot \boldsymbol{n}_{3}-2}
\end{aligned}
$$

Q．There is a 3 Dimensional $\left(n_{1} \times n_{2} \times n_{3}\right)$ z players chess board and two rooks． If we put that 2 rooks on squares chessboard one－by－one randomly，then what is the probability that two rooks are attacking on each other？

$$
\begin{array}{ll}
n(S)=z \times\left(\frac{n_{1} \cdot n_{2} \cdot n_{3}}{2}\right)-1=\frac{z \cdot n_{1} \cdot n_{2} \cdot n_{3}-2}{2} & \boldsymbol{P}(\boldsymbol{R})
\end{array}=\frac{\boldsymbol{n}(\boldsymbol{R})}{\boldsymbol{n}(\boldsymbol{S})}=\frac{\boldsymbol{n}_{\mathbf{1}}+\boldsymbol{n}_{\mathbf{2}}+\boldsymbol{n}_{\mathbf{3}}-\mathbf{3}}{\left(\frac{\boldsymbol{z} \cdot \boldsymbol{n}_{\mathbf{1}} \cdot \boldsymbol{n}_{2} \cdot \boldsymbol{n}_{\mathbf{3}}-\mathbf{2}}{\mathbf{2}}\right)} ⿻ 土 一=\begin{array}{ll}
n(R)=\left(n_{1}-1\right)+\left(n_{2}-1\right)+\left(n_{3}-1\right) & =\frac{2\left(\boldsymbol{n}_{1}+\boldsymbol{n}_{2}+\boldsymbol{n}_{3}-3\right)}{\boldsymbol{z} \cdot \boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2} \cdot \boldsymbol{n}_{3}-2} \\
n(R)=n_{1}+n_{2}+n_{3}-3 &
\end{array}
$$

Q. There is Y Dimensional $(8 \times 8 \times \cdots \times 8) 2$ players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$
\begin{aligned}
& n(S)=8 \times 8 \times 8 \times \cdots \times 8-1=8^{Y}-1 \\
& n(R)=(8-1)+(8-1)+(8-1)+\cdots(Y \text { times })=Y(8-1)=7 \mathrm{Y} \\
& \boldsymbol{P}(\boldsymbol{R})=\frac{\boldsymbol{n}(\boldsymbol{R})}{\boldsymbol{n}(\boldsymbol{S})}=\frac{7 Y}{8^{Y}-1}
\end{aligned}
$$

Q. There is Y Dimensional $(n \times n \times \cdots \times n) 2$ players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$
\begin{aligned}
n(S) & =n \times n \times n \times \cdots \times n-1=n^{Y}-1 \\
n(R) & =(n-1)+(n-1)+(n-1)+\cdots(Y \text { times })=Y(\mathrm{n}-1) \\
\boldsymbol{P}(\boldsymbol{R}) & =\frac{\boldsymbol{n}(\boldsymbol{R})}{\boldsymbol{n}(\boldsymbol{S})}=\frac{\boldsymbol{Y}(\boldsymbol{n}-1)}{\boldsymbol{n}^{Y}-\mathbf{1}}
\end{aligned}
$$

Q. There is Y Dimensional $(n \times n \times \cdots \times n) 2$ players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$
\begin{aligned}
n(S) & =n \times n \times n \times \cdots \times n-1=n^{Y}-1 \\
n(R) & =(n-1)+(n-1)+(n-1)+\cdots(Y \text { times })=Y(n-1) \\
P(R) & =\frac{n(R)}{\boldsymbol{n}(\boldsymbol{S})}=\frac{Y(n-1)}{n^{Y}-1}
\end{aligned}
$$

Q. There is Y Dimensional $\left(n_{1} \times n_{2} \times n_{3} \times \cdots \times n_{Y}\right) 2$ players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$
\begin{aligned}
& n(S)=n_{1} \times n_{2} \times n_{3} \times \cdots \times n_{Y}-1 \\
& n(R)=\left(n_{1}-1\right)+\left(n_{2}-1\right)+\left(n_{3}-1\right)+\cdots+\left(n_{Y}-1\right)=n_{1}+n_{2}+n_{3}+\cdots+n_{Y}-Y \\
& \boldsymbol{P}(\boldsymbol{R})=\frac{\boldsymbol{n}(\boldsymbol{R})}{\boldsymbol{n}(\boldsymbol{S})}=\frac{\boldsymbol{n}_{1}+\boldsymbol{n}_{2}+\boldsymbol{n}_{3}+\cdots+\boldsymbol{n}_{Y}-\boldsymbol{Y}}{\boldsymbol{n}_{1} \times \boldsymbol{n}_{2} \times \boldsymbol{n}_{3} \times \cdots \times \boldsymbol{n}_{Y}-\mathbf{1}}
\end{aligned}
$$

Q. There is Y Dimensional $(8 \times 8 \times \cdots \times 8)$ z players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$
\begin{aligned}
& n(S)=\frac{z \times(8 \times 8 \times 8 \times \cdots \times 8)}{2}-1=\frac{z 8^{Y}}{2}-1=\frac{z 8^{Y}-2}{2} \\
& n(R)=(8-1)+(8-1)+(8-1)+\cdots(Y \text { times })=Y(8-1)=7 Y \\
& P(\boldsymbol{R})=\frac{\boldsymbol{n}(\boldsymbol{R})}{\boldsymbol{n}(\boldsymbol{S})}=\frac{7 Y}{\left(\frac{\mathbf{z} 8^{Y}-\mathbf{2}}{2}\right)}=\frac{14 Y}{\mathbf{z 8}^{Y}-2}
\end{aligned}
$$

Q. There is Y Dimensional $(n \times n \times \cdots \times n)$ z players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$
\begin{aligned}
& n(S)=\frac{z \times(n \times n \times n \times \cdots \times n)}{2}-1=\frac{z n^{Y}}{2}-1=\frac{z n^{Y}-2}{2} \\
& n(R)=(n-1)+(n-1)+(n-1)+\cdots(Y \text { times })=Y(\mathrm{n}-1)=\mathrm{Y}(\mathrm{n}-1) \\
& \boldsymbol{P}(\boldsymbol{R})=\frac{\boldsymbol{n}(\boldsymbol{R})}{\boldsymbol{n}(\boldsymbol{S})}=\frac{Y(\boldsymbol{n}-\mathbf{1})}{\left(\frac{\boldsymbol{z n ^ { Y } - 2}}{2}\right)}=\frac{2 Y(n-1)}{z n^{Y}-2}
\end{aligned}
$$

Q. There is Y Dimensional $(n \times n \times \cdots \times n)$ z players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$
\begin{aligned}
& n(S)=\frac{z \times(n \times n \times n \times \cdots \times n)}{2}-1=\frac{z n^{Y}}{2}-1=\frac{z n^{Y}-2}{2} \\
& n(R)=(n-1)+(n-1)+(n-1)+\cdots(Y \text { times })=\mathrm{Y}(\mathrm{n}-1)=\mathrm{Y}(\mathrm{n}-1) \\
& \boldsymbol{P}(\boldsymbol{R})=\frac{\boldsymbol{n}(\boldsymbol{R})}{\boldsymbol{n}(\boldsymbol{S})}=\frac{Y(\boldsymbol{n}-\mathbf{1})}{\left(\frac{\mathbf{z n ^ { Y } - 2}}{2}\right)}=\frac{2 Y(n-1)}{z \boldsymbol{n}^{Y}-2}
\end{aligned}
$$

Q. There is Y Dimensional $\left(n_{1} \times n_{2} \times \cdots \times n_{Y}\right)$ z players chess board and two rooks. If we put that 2 rooks on squares chessboard one-by-one randomly, then what is the probability that two rooks are attacking on each other?

$$
\begin{aligned}
n(S) & =\frac{z \times\left(n_{1} \times n_{2} \times \cdots \times n_{Y}\right)}{2}-1=\frac{z \times n_{1} \times n_{2} \times \cdots \times n_{Y}}{2}-1=\frac{z n_{1} n_{2} \cdots n_{Y}-2}{2} \\
n(R) & =\left(n_{1}-1\right)+\left(n_{2}-1\right)+\left(n_{3}-1\right)+\cdots+\left(n_{Y}-1\right)=n_{1}+n_{2}+n_{3}+\cdots+n_{Y}-Y \\
P(R) & =\frac{\boldsymbol{n}(\boldsymbol{R})}{\boldsymbol{n (S)}}=\frac{n_{1}+n_{2}+n_{3}+\cdots+n_{Y}-Y}{\frac{Z n_{1} n_{2} \cdots n_{Y}-2}{2}}=\frac{2\left(n_{1}+n_{2}+n_{3}+\cdots+n_{Y}-Y\right)}{z n_{1} n_{2} \cdots n_{Y}-2}
\end{aligned}
$$

